

EEL3701 The Mathematics of Logic Design - Boolean Algebra	
 Basic Postulates & Theorems 	
> Identity Laws	
1. $X + 0 = X$	$X \bullet 1 = X$
2. $X + 1 = 1$	$\mathbf{X} \bullet 0 = 0$
> Indempotent Laws	
3. $X + X = X$	$X \bullet X = X$
> Involution & Complementarity Laws	
4 (X')' = X	
5 X + X' = 1	$\mathbf{X} \bullet \mathbf{X}' = 0$
\sim Commutative Laws	
\sim Commutative Laws	$\mathbf{V} \cdot \mathbf{V} - \mathbf{V} \cdot \mathbf{V}$
0. X + Y = Y + X	$\mathbf{X} \bullet \mathbf{Y} = \mathbf{Y} \bullet \mathbf{X}$
> Associative Laws	
7. $(X+Y)+Z=X+(Y+Z)=X+Y+Z$	$(XY) \bullet Z = X \bullet (YZ) = XYZ$
> Absorption Laws	
$8. X \bullet (X + Y) = X$	$X + (X \cdot Y) = X$
University of Florida, EEL 3701 – File 07 © Drs. Schwartz & Arrown	
2	
2	

EEL3701 Boolean Expressions in Lexical Order • Consider /D₂ D₃ D₀/D₁ = D₃/D₂/D₁ D₀ = D₀/D₁/D₂D₃ • Since the terms can be written in many ways (by associativity and/or commutativity), we need conventions. Rule H2: You shall write all the Boolean expressions with same name in reverse subscript numerical order. Especially important within a single product (AND) term. • For example, write the above product term as D₃/D₂/D₁D₀. • For example, write the above product term as LA₁₃/A₁₄ + /A₁₅ as /A₁₅ + /A₁₄A₁₃ E. • Market ELEXPLOYED

University of Florida, EEL 3701 – File 07 © Drs. Schwartz & Arroyo

4

9

EEL3701 Minimum Sum Of Product (MSOP) • When you cannot reduce an SOP further, this is called a minimum sum of products (MSOP) expression Ex: Simplify the following expression (from previous page) $f(a,b,c) = m_0 + m_2 + m_3 + m_5 + m_6 = /a/b/c + /a b/c + /a b c + a/b c + a b/c$ We quite often use X+/X = 1, $X \cdot 1 = X$, X+X = X, & $X \cdot X=X$. Thus, $m_0 + m_2 = /a/b/c + /a b/c = /a /c (b + /b) = /a /c$ $m_2 + m_3 = /a b/c + /a b c = /a b (/c + c) = /a b$ $m_2 + m_6 = /a b/c + a b/c = (/a + a) b /c = b /c$ $f(a,b,c) = m_0 + m_2 + m_3 + m_5 + m_6 = m_0 + m_2 + m_2 + m_2 + m_3 + m_5 + m_6$ $= (m_0 + m_2) + (m_2 + m_3) + (m_2 + m_6) + m_5$ = /a/c + /ab + b/c + a/bcf(a,b,c) = /a b + /a /c + a /b c + b /c

10

6

7

13

